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Subharmonic oscillations of a pendulum excited by horizontal oscillations of its suspen- 
sion in the case of simple harmonic excitation are investigated. 

The motion of a mathematical,pendulum excited by oscillations of its point of suspen- 

sion has been studied by many authors [l-s]. The influence of the vertical oscillations 

of the point of suspension is ordinarily considered but there are papers devoted to the 
influence of the horizontal oscillations p] and of oscillations of more general form [8]. 

A certain supplement of Struble 19. lo] to existing asymptotic methods in the theory 
of nonlinear oscillations [ll] is used herein. 

1. The motion of a mathematical pendulum excited by the horizontal oscillations of 
its suspension is defined by the equation 

cp” + $ sin cp = - -j- 2” COs ‘p (i-1) 

where the dots denote differentiation with respect to time, I is the length of the pen- 

dulum, q the angle of deflection from the vertical, and z the displacement of the pen- 
dulum suspension. 

Let us examine relatively small deflections of the pendulum. I.,et us assume 
. . 

cp = E’I’Z, +- = - e’/’ alpa cos pt, p (11 g)‘12 = f3 

a = a&P (E is a small parameter) (1.2) 

If the dimensionless time z = (g / I)“’ t is introduced into (1.1). we obtain the equation 

2” + 2 = 0 00s BT + e (‘/a$ - l/z a22 co9 fir) (1.3) 
The primes here denote differentiation with respect to r and terms containing higher 

powers of e than the first are discarded. Let us seek the solution of (1.3) in the form 

Z = A co9 (T - $) + + cos /3t + &a+ .A2 + . . . (L4) 

Here A, IJ are slowly varying functions of t and zlr z2, . . . are additive corrections 

expressed uniquely in terms of A, g and T. For the sake of brevity, the case is considered 

when the excitation frequency ‘p is approximately thrice the natural frequency (g / Z)“‘, 

i.e. p =: 3. Substituting (1.4) into (1.1) we find 

(A’ + 2A*’ - AqP) cos (T - IJI) + (A$” - 2A’ -i ZA’$) sin (z - $) + F (2,” -I- zl) •t 

+ .?2 (z2” + z2) + . . . = (1.5) 

=-E {[ ‘le A3 + ‘/UP (2fY - 1) (1 - fi2)-2 A] cos (z - $) + l/g c@ (1 - p”)-’ A2 cos X 

%[(2 - fi) T - 2$] + ‘L+z: A3 cos (3r - 3$) -j- [ I/P up” (1 - fJ”)-’ Aa -f l/g a3 (3f? - 2) X 

X (i - p2)-3] cos fh + l,‘za a3 (3p2 - 2) (1 - b2)-3 cos 3Bt + ‘/a up” (1 - fl’)-’ A* cos X 

X[(2 -I- B) T - WI + ‘Is a2 (28% - 1) (1 + B”)_ co9 [(28-i) t + $1 + ‘/e .2 (2B’ - 1) x 

X(i + 82)-2 00s [(28 + i) r - $11 

Here terms containing higher powers of E than the first have been discarded. Utilizing 
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the identity 

cos I(2 - p) z - 2$] -= cos k cos fr - I@) + sin h sin (I - $), il= (3 - 6) 7 - 3% liJ) 

and comparing co~es~nding terms in (1.Q we obtain 

A V + &I$’ - AqJ2 = E [l/&s + 74 a2 (2s” - 1) (1 - o2)-z A ] + */s &afi2 (1 - o*)-1A2 cm h 

2A’ $- A$” f 2A’g’ = IIS &up2 (2 - fi2)-1As sin h: (1.7) 

- 39) + %r a3 (3fiB - 2) (l - B”)” EOS 3@ + */a c@ {11-- @“)-I A 2 cos [ (2 + 8) z - 

-291 + ‘/a .a (xg2 - 1) (1 - fi2)-” co9 [(zg - 1) t + Q] + ‘is u” (Z/P - 1) (Z + @‘Y-’ X 

xcos [GV + 1) z - $1 (1.8) 

Equations (1.7) are variational, and (1.8) the perturbation equation. 
If the “detuning” 13 - f$i is a small first order quantity in E, then any solution of the 

system dA I dz = - IiS ~$2 (I - flZ)-’ (@ - 1)-l A9 sin h (1.9) 

d$ / dz = l/u &A2 + ‘Is ra2 (2pz - 1) (1 - fi2)-2 + l/g gag2 (i - fi’)-l (fl - I)-’ *I Cm k 

will Satisfy the system (1.7) to the accuracy of first order terms in E. The domain of 
subharmonic resonance is thereby defined, and it is convenient to write the system(l.9) 

as equations of the autonomous system 

dA / du = AZ sin h, dh I du = 2n - 4aA2 + 3A cos h (1.10) 

Here 
u = 8 (fi2 - 1) (b - 1) u-~~%c, a = 3/8 (pa - 1) (0 - 1) a-1g-2 

?l= 1/2I(3 - B)&-l- 3/@2 (2gz - 1) (1 - B”)_“] 8 (B” - 1) (8 - I) a-1g-2 

The changes in A and h will evidently be slow since ZL is proportional to the slow time 

EZ. E~rn~at~ng ft frem (X.10) we obtain 

(2n----4aA2+3A)coshdA-A2sinhdh=0 (1.11) 

This equation has the general integral 

n~2 _ aA” + A3 cos h = c (l.i2) 

where c is the constant of integration. 

2, Let us investigate the phase trajectories for the autonomous system (1.10) in the 
ry-plane for which 2 = d cos h, v = A sin h, i.e. A and h will be natural polar coor- 
dinates. The phase trajectories are defined by (1.12). and they are all symmetrical 
relative to the z-axis. Let us first determine the singularities of the system (1.10). 

From the conditions 
ri..l ,I du = 0 dh j du = 0 (7.1) 

we find 
sir1 h =z 0, 2n - 4uA2 I_t 3A = 0 (2.2) 

It is now seen that the singularities are on the x-axis and determined as the roots of the 
quadratic equation (2.2). Moreover, the origin d = 0 is also a singular point. We obtain 
a graphical picture of the location of the singularities by representing (2.2) as 

2n = f (z) :-= &x2 - 3~ (X.3) 

and solving it graphically (Fig. 1). 
For n < -’ It/~~cC1 the equation has no real roots. For n ‘= -3/3La-’ there appears 

one double root x = “/$a-‘. For - sjlazaml < E < U there are two positive roots. For 
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it = O.the lesser root becomes zero, and for n > 0 there are one negative and one posi- 
tive root (the negative root is the ~~~1~~ on the negative z-half-axis). 

Depending, therefore, on the magnitude of n, which is expressed in terms of the detun- 
ing 1.3 - B 1, the following fundamental cases can 
be established. 

1”. For n < - S,LuaL~. In this case there exists 
just one singularity. the origin which is a center 
(Fig.2a). In the boundary case B = - */s#% there 
are two singularities, the origin which is again a cen- 
ter,and A = Q2, h = 0 , which turns out to be an 
extraordinary singularity, whose index is zero(Fig. 2b), 

2*. For -- */&X1 < n < 0. Xn this czse there are 
Fig. 1 three si~gul~ties, the origin (a center), a point cor- 

responding to the least root of (2.3) (a saddle point), 
and a point ~~~~nding to the larger root of (2.3) (a center). A separatrix in the form 
of a “figure-eight” enclosing the two centers passes through the saddle point. The phase 
trajectories for this case are shown in Fig.!&. In the limit case of n = 0 the saddle 
point and the center corresponding to the origin merge to form an unstable critical point 
analogous to point A = %a, li = 0 in the ~~tiug case n = - */sP. The phase tra- 
jectories for this case are shown in Fig. 2d. 

Fig, 2 

3”. For 0 < n. Here, as in case 2O, there are three singularities. The origin and a 
point co~s~nding to the positive root are centers, while the point resending to the 
negative root is a saddle point. Three families of phase trajectories are separated by the 
separatrix starting from the saddle point and reentering it ( Fig. 2e). 

The phase trajectories transform into circles as c 4 cd for all cases. The centers and . 
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saddle points on the saddle point determined by (2.3) are bifurcation amplitudes corre- 
sponding to stable and unstable subharmonic solutions of (1.3). The closed phase tra- 

jectories describe long-period oscillations of amplitude A (beats) while the separatrices 

correspond to transition values of 4. 

If a slight damping is inserted into the system, then the centers on the phase plane trans- 
form into asymptotically stable foci, while the saddle points do not alter substantially. 

The subharmonic solutions corresponding to the foci will be asymptotically stable. The 

phase trajectories now describe a very slow transition mode of the motion. Cases 1”. 2’. 

3” in the presence of damping are shown in Fig. 2f. g. h, respectively. It must be noted 
that the focus (and center) A = 0 corresponds to the harmonic solution (1.4) which has 

no first term, rather than to the subharmonic solution. 

3, Let us find the amplitude A as a function of X. From (1.10) and (1.12) we obtain 

-k 1/p” - (c - np + c@) 2 
= 2du (P = 4 .- 

Let us consider the polynomial 

G (~1 = p3 - (c - np + apz)2 (3.2) 

The roots of the polynomial (3.2) agree with the positive roots (for AZ) of (1.12) with 
CM h = fl. For different values of c and n the polynomial (3.2) has four real roots 
or two real and two complex roots, i.e. it can be written in the form 

G (gu) = --a? (P - PL1) (11 - Pz) (p - p3) tp - p4), PI> p2 > p3 > p4 > 0 (3.3) 

v = l/2 [ae2 + 2na-la - (pl + p2)], co2 = cZa-2plp2 - vE (3.4) 

The polynomial (3.2) v-ill have the form (3.3) if two phase trajectories intersecting 

the s-axis exist for some value of c . The first at points with fhe polar radii A3 = I/c2, 

A4 = 1/c4 , and the second at points with the polar radii A, = v/tL1, AZ = v/L2.’ The 

polynomial (3.2) will have the form (3.4) if for some value of c there exists just one 
phase trajectory intersecting the .z -axis at points with the polar radii A 1 = l/Fl, A2 = 

= IfG. 
The real roots are found directly in constructing the appropriate phase trajectory. It 

is easy to show that the function G (p) has the form (3.4) for all phase trajectories in 
case lo, as well as for the majority of phase trajectories in cases 2’ and 3’. It can be 

shown that the polynomial G’ (p) has the form (3.3) in case 3’ for all phase trajectories 
which close around the origin, as well as for their corresponding phase trajectories (for 

the same values of c) which close around the other center. In case 2” the polynomial 
G (~1 has the form (3.3) for all phase trajectories which close around the other center 
as well as for their corresponding phase trajectories which close around the origin for 
_ ‘Jt 3:! a-1 < )j < --‘,!,a-‘. The polynomial G (p) will have the form (3.3) also for 
-1 1’2-1 ( n < 0 for all phase trajectories which close around the origin and for corre- 

sponding phase trajectories which close around the other center. 
Let us first examine the case when G (11) has the form (3.3). Let us set 

(P3 -Pd @2 - 111) 4 
Ii= = (IL3--Pl)(Pz -p4) ’ I” = (tu - p3) (pz - p4) 

Then utilizing [12], we obtain from (3.1) for p in the range P4 6 1~ 6 ~3 
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Here the modulus k of the Jacobi elliptic function sn is defined by (3.5) and Q is the 
value of the parameter u for n = Pa For P in the range PZ C p g pr we have 

(3.7) 

Here the modulus k has the same value as in (3.6). and up is the value of u for p f-t ps. 
The period of the long-period oscillations of amplitude A with respect to the time T 

is defined by the formula eT la ps 
= 8 (pa - 1) (B - I) K tk) (3.8) 

Here K (k) is the complete elliptic integral of the first kind in Legendre form, of modu- 
lus k. It is seen that the period of variation of A for the two cases (3.6) and (3* 7) is the 
same although the motions themselves are completely distinct. 

Let us now examine the case when G (p) has the form (3.4). Here, following [lZ] we 
use the notation 

p1--v 
tgP=-y--, P-9 tg$‘=F, k2=,sin~--, l=_ 2 

(3.9) 

For n in the range P* 6 p g Pl we obtain 

Here the modulus k of the Jacobi elliptic function cn and the quantity 1 are defined 
by (3.9), while u. is the value of the parameter u for p = pl. 

The period of oscillations of amplitude A is defined by the formula 

ET = - 
la p 

4@- Q(B - i) K(k) (3.11) 

where the modulus of the complete elliptic integral and 1 are defined by (3.9). After 
determining A as a function of u and 7, by using (1.9) we can determine Up as a func- 
tion of. u and r. 

The solution of the first approximation equations (1.7) and (1.8) is completed by 
determining the additive perturbation +. From (1.8) we obtain 

z1 = ‘/sa12B2 (i - B”)2 A” + (38s - 2) a21 fi - fi2)-* cos fir - l/~&a cos (32 - 39) + 
+ l/,q (3B2 - 2) u3 (1 - B2)-9 (1 - 9B2)-’ cos 3Bz - ‘,‘saB2d2 (1 - Bs)-’ (8 + 1)” Cos x 

x [(2 + B) r - 244 + ‘/31a2 w - 1) (1 + p2r2 (1 - B)-‘B-’ cos [(ZS - 1) z + I$] - 

- V3,az (2B” - 11 (1 + fW” (B + 11-W’ eoa I@@ + 1) t - $1 (3.22) 

In any case zr is the higher harmonics of the motion. They are not essential for the 
general representation of the character of the motion. The main term A cos (7 - 9) 

reflects the nature of the motion. 
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A method of successive computation of the parameters governing the equation for stabi- 

lization of linear systems based on the ideas of nonlinear programing and reducing to 
minimization of the original functional is described. We do not succeedin presenting a 

rigorous mathematical foundation. 

1, Let the perturbed motion of a stationary linear control system be described by the 
set of differential equations 

dXfdt = AX f BlJ (f.1) 

Here X is the column vector of the fundamental variables; A is a square ( n X n) mat- 

rix, B is the column vector of the control efficiency coefficients, and U is a scalar of 
the controlling effect of the regulator. 

It is assumed that the system (1.1) satisfies the controllability conditions. The matrices 
A, B are not degenerate, and the matrix q = 11 B, AB, A2B, . . . . A”-lBil is of rank n and 
consists of 1~ linearly independent vectors. It is required to seek the control law 

U = cx (1.“) 

assuring asymptotic stability of the unperturbed motion X = 0. It is assumed that the 
matrix C has the form of a row vector and yields a square (n x n ) matrix in the product 
BC . Substituting (1.2) into the system (1.1) we obtain 


